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 Locating fixed sensing devices with a mobile anchor is attractive for 

covering larger deployment areas. However, the performance sensitivity to 

the geometric arrangement of anchor beacon positions remains unexplored. 

Therefore, localization using new RSSI-based localization algorithm, which 

uses a volumetric probability distribution function is proposed to find the 

most likely position of a node by information fusion from several mobile 

beacon radio packets to reduce error over deterministic approaches. This 

paper presents the guidelines of beacon selection that leads to design the 

most suitable trajectory, as a trade-off between the energy costs of travelling 

and transmitting the beacons versus the localization accuracy. 
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1. INTRODUCTION 

Localization is important for many Wireless Sensor Networks (WSN) applications. When a sensor is 

deployed, its sensor data is often of limited use unless the position of the sensor is known when the 

measurement was taken. While technologies like GPS are now relatively cheap, the additional circuitry, 

antennas, energy use and computational resources are not always suitable for low cost, low-energy sensors, 

especially where the sensor is static and only needs to be localised once. Additionally, GPS is not always 

available due to occlusion by buildings, trees or other obstructions. For this reason, there is keen interest in 

other methods for localizing sensors. This paper considers a motivating scenario where the sensor nodes are 

carried by an aircraft and are then dropped and randomly scattered within the sensing region such as in the 

application of bushfire monitoring [1]. In this scenario, these nodes are not guaranteed to land at particular 

locations or in particular orientations. The nodes should be lightweight and rugged enough to minimize the 

possibility of being damaged during their deployment [2]. Localization can be achieved by using the same 

aircraft to act as a mobile anchor. The aircraft can be equipped with GPS and can broadcast its position at 

regular intervals along a specific trajectory. The deployed sensor nodes are blind nodes [3]. 

One of the main issues is whether the mobile anchor’s trajectory may influence the localization 

performance depending on the number of beacons sent and the positions of the mobile anchor nodes. 

Therefore, we will investigate two sets of parameters for a commonly used flight path trajectory, double 

square grid that will be analysed to determine the path length. Another parameter is to determine the effects 

of varying the height of beacons and the distance or spaces between beacons on localization error. 

Multilateration is known to be significantly affected by anchor geometry. For mobile anchors, the position of 

beacons depends on the flight path, and the spacing of beacon messages in that path. There are limited studies 
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on mobile anchor placement since more attention has been given to localization accuracy and computational 

effort. Guidelines to optimize the beacon placement by considering the ratio between the distance and the 

radio range, and the minimum height of the triangle formed by the anchors and the blind node is proposed in 

[4]. The impact of anchor node placement and its rules as well as using the smallest number of anchor nodes 

are discussed. This work is in 2D scenario but it can be expanded to 3D localization. Some aspects of beacon 

positioning especially the effect of anchor node placement on the localization errors on a network-wide basis 

is explored in [5]. This approach could minimize the number of anchors required while avoiding  

poor localization.  

In [6, 7], three beacon points from among the received beacons are selected and the intersection area 

with two beacon points are obtained to calculate the location of the blind node using the third beacon point to 

reduce the ambiguity of the intersection area. They assumed straight line movement of a mobile beacon at a 

constant speed. The communication range between mobile anchor node and the unknown sensor is 20 metres 

and the mobile anchor node will broadcasts a beacon every 1 metre. However this algorithm is applied to 2D 

localization and there is a possibility of having a flip ambiguity due to the straight movement. Flip ambiguity 

is a phenomenon in localization caused by inappropriate geometric relations between the anchors [8]. In 2D 

localization, anchors which are co-linear or close to co-linear will have a region where the multilateration 

least square error objective function is small close to the actual location of the blind node. In [9], the analysis 

of flip ambiguity considered the ranging errors caused by the environmental noise. They proposed an 

algorithm to detect and solve the flip ambiguity problem in various situations. While their work is focused on 

the flip ambiguities in trilateration, it also can be extended to a multilateration algorithm. Flip ambiguity is a 

particular problem with airborne anchors, since a naïve flight path, which flies over an area at a constant 

height is exactly the situation that can cause flip ambiguity. Thus, in my work on path planning, this problem 

will need to be considered. 

An important issue in using mobile anchor nodes will be what path the mobile anchor node should 

follow, when and where it should transmit beacon packets. More beacon packets can potentially improve 

localization accuracy, but it will have effects on the time and energy needed for localization. Path planning 

may be pre-planned, or it may react to information from blind-nodes (e.g. some node may indicate they have 

insufficient packets for accurate positioning, so the mobile anchor node may change its path to accommodate 

these nodes). The algorithm for anchor placement can be categorized as random, statically planned or 

dynamically planned trajectories [10-12]. Poorly planned trajectories may cause a large localization delay, 

low localization ratio and increase the localization error. The statically planned trajectory is a well-planned 

path designed which should provide non-coplanar anchor positions to avoid the flip ambiguity issues. The 

localization using a static trajectory is further discussed in [13]. However, most of the positioning schemes 

are based on a range-free approach that is not part of our research. Static path planning schemes such as those 

in [14-19] consider factors such as the mobile anchor node movement strategy, number of mobile anchor 

nodes, number of transmitted message for localization and the comparison between choices of  

trajectory pattern. 

Localization performance [20-23] can be evaluated through performance metrics such as 

localization accuracy, computational complexity, energy efficiency, time taken, number of anchors to be 

deployed and communication overhead. Motivated by this factor, we will investigate the localization error 

based on the beacon placement that consists of height of beacon and the beacon spacing using proposed 

algorithms. These guidelines can lead us to design a beacon path, which will give suitable beacon geometry 

for the scattered blind nodes. One possible approach is to use Gradient Descent so that beacon positions to 

move to positions that give better and better accuracy, and then draw conclusions about the geometrical 

features of good beacon arrangements. 

 

 

2. RESEARCH METHOD 

A multilateration algorithm and optimization of the number of anchors using Deterministic 

Multilateration (DML) and Volume based Probabilistic Multilateration (VPML) algorithms have been 

analysed in [3, 24, 25]. However, there is limited analysis of geometric sensitivity of beacon positions and 

mobile anchor trajectories. Thus, further research and experiments will be discussed in this section. In order 

to design the best flight path of the aircraft and to calculate the best beacon placement along that flight path, 

this research aims to find good mobile anchor node positions for multiple blind node localization on the 

ground. Positioning involves tension between having high radio signal strength, which gives lower ranging 

uncertainty and between having spaced out anchors. These experiments also investigate how accuracy varies 

across the sensing region. Furthermore, the height and the spacing between beacons and path length will be 

determined for the best compromise between path length and accuracy.  
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Therefore, the number of simulation iterations that are needed to give consistent estimates of 

performance is investigated. In our previous experiment [3] 100 iterations were used, but these experiments 

are more complex (potentially thousands of beacons, tens of blind nodes), and so a smaller number of 

iterations is helpful to reduce the experimental run time if it still gives consistent results. The chosen flight 

path is a square 2D grid pattern. To avoid flip ambiguity, the patterns must include measurements at different 

heights, giving the double square grid pattern. The experiments here use a number of blind nodes spread 

through the sensing region, including some in unfavourable positions near the region edge. The experiments 

will investigate not just the average accuracy, but also how accuracy varies across the sensing region. These 

experiments use a probabilistic simulation environment (VPML) as shown in Figure 1 due to its performance 

that gives better error results for beacon localization than DML. The possible height of beacons and the 

spacing between beacons will be determined by comparing different combinations of aircraft height and 

beacon spacing. For a large number of beacons, the highest signal strength beacons may all be close together, 

which is not a good geometry. 

 

 

 
 

Figure 1. Block diagram of VPML 

 

 

2.1. Volume based Probabilistic Multilateration Localization (VPML) 

Given a path loss  ̂ , a PDF of possible distances from beacon i (  ) can be calculated; 

 

 ̂              ̂           ̂   (1) 

 

Note that    is the path loss at    which is 28.43dB,   is the log normal shadowing power at 3.3647. While 

 ̂ is the zero mean Gaussian random variable with standard deviation of path loss    at 3.37dB. Assuming 

the reference distance used for the experimental measurement,    is 1 metre, then      =0. 
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Thus     ̂  can be represented as a Probability Distribution Function (PDF) of RSSI: 

 

    ̂  
     

   
    ̂   (3) 

 

where,     
  

   
 (4) 

 

The (3) gives a PDF of the likelihood of a particular log-distance for the range, given a path loss 

value. Therefore, we need to convert to a PDF of distance, not log-distance. To convert to a PDF of  ̂ , we 

add a correction factor. It must be true that the probability of the real range being between di and di+ must 

be the same in both cases. 
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For the multiple beacons, the probability that the blind node is  ̂  away from beacon i for all    is 

conventionally calculated using the product of the PDFs. Here, we calculate the joint PDF based on the 

product of individual PDFs as in (7). The probability of being at a certain position is the probability of being 

a certain range from beacon 1 and being a certain range from beacon 2, etc. Thus; 

 

           ∏               (8) 

 

where      is the PDF of being distance d from beacon i while    is the un-normalized joint PDF that the 

blind node is a certain distance from beacon 1 and a certain distance from beacon 2, until all distances from 

each beacon i are estimated.  

The actual PDF would require the PDF to be divided by the volume integral of the function above to 

normalize the total likelihood of being anywhere in the volume to 1. However, we are only looking for the 

maximum value of the joint PDF. The maximum of the un-normalized joint PDF will be at the same location 

as a PDF normalized over the whole volume. An optimization approach can then be used to find the point 

where PD(x,y,z) is a maximum, and this is the estimated position. This is the conventional approach to 

probabilistic localization, as described in [26]. This conventional approach, however, can be improved by 

closer examination of the geometry. 

 In the above formulation, each PDF is a function of a single variable, distance. Given that we are 

searching for the best point in a 3-D space, it could also be argued that we should use a PDF based on 

volume, not distance. Given a PDF(d) based on distance from a beacon, the PDF(x,y,z) that the blind node at 

a particular point at that range can be calculated. A point at a range of d in the one-dimensional PDF 

corresponds to the surface of a sphere, radius d, centred at the beacon. The probability that the blind node is 

in an infinitesimal interval d+d in the 1-D PDF corresponds to the probability that the blind node is in a 

spherical shell, inner radius d, outer radius d+d. The volume of the shell is surface area times thickness, 

4πd
2
d. Since this shell volume increases with d

2
,
 
the volumetric PDF in 3-D will also scale with d

2
 

compared to the linear PDF. In particular, the volumetric PDF at a particular point on that sphere is 
        

     
 

Again, ignoring constants (4π) and d, this gives a relative volumetric PDF for one beacon range of:  

 

       
     

   
 (9) 

 

Then a new joint PDF for being at a certain point based on all the range estimates is: 

 

           ∏
            

      (10) 

 

In other words, we further scale each PDF by a factor of di
2
 before multiplying them together. Here, 

we investigated which of           and           works best. In both cases, we used simple gradient 

descent convex function optimization to find the maximum value of the joint PDF, starting from the DML 

estimated position. This gives the         which maximizes    or   . Overall, his paper explores the 

geometrical sensitivity and the airborne trajectory using the examination of VPML. 
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2.2. Simulation setup 

Four experiments will be conducted where the real distance is used with a random number generator 

to give an estimated path loss between beacons and blind nodes. Any path loss that exceeds the sensitivity of 

-90.5dB will be discarded. Then, a maximum of 20 of the strongest beacon packets will be used to observe 

the relationship between number of anchor positions versus localization error. Finally, the estimated position 

of the blind nodes using VPML will be determined. The parameters used in this simulation are; 

a. Spacing is the distance between the beacons in the X and Y direction. 

b. Height is the Z position of the beacon. 

  

Experiment 1: This experiment is to determine the number of iteration for multiple blind node localization at 

various geometrical position using VPML algorithm. The objective is to identify the number of simulation 

iterations to reduce the computation time but maintain stable statistics using the VPML algorithm only. The 

simulation is run using the following number of iterations (5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100) at 10 

and 13 metre heights. These numbers of iterations are chosen to accurately identify where median error 

stabilizes. The proposed square grid path planning is used to localize a single blind node at 500,500,0 actual 

position. The median error versus number of iterations will be plotted to determine the point of  

stable statistics. 

Experiment 2: This experiment is to determine the possible height of beacons. The square grid path is 

designed to send a beacon at every position with a particular X-Y spacing and with alternate rows at different 

heights to localize a blind node. Two nodes at 500,500,0 (directly under a beacon) and 127,192,0 (between 

beacons) are localized. The objective is to determine which are the best heights for alternate rows of beacons 

in the square grid flightpath. The heights of the mobile anchor (consisting of alternate lower and upper paths) 

is initially tested using a range of height combinations such as 10 and 13 metres, 10 and 15 metres, 20 and 23 

metres and 20 and 25 metres. These combinations are based on the estimated height above the obstacles with 

localization error which is less than 30 metres (considered as extremely high error) . Note that 10 metres is 

chosen as a minimum height to avoid obstacles such as trees. Solutions will use the best N nodes, where N is 

varied from 4 to 20. This experiment will also justify the combination of heights that will be used for  

future simulations. 

Experiment 3: The third experiment is to determine the possible spacing between beacons. This experiment 

is to compare the localization performance at different beacon spacing by using square grid spacing of 5, 10, 

20, 30, 40, 50 and 60 metres with alternate heights determined by the results from the previous section. The 

maximum spacing of 60m is chosen since this is approximately the maximum radio range for a receiver 

sensitivity of -90.5dB. In this simulation, a square grid path with these different spacing and heights is used 

to localize one blind node located centrally (500,500,0) within a 1km x 1km area using VPML with up to 20 

beacon packets. Examples of a square grid path with alternate heights and different beacon spacing are 

shown in Figure 2. 

 

 

 
 

Figure 2. Square grid path with 30m beacon spacing and alternate layers of 10m and 13m height 

 

 

Experiment 4: This experiment is to determine the path length and number of beacons using the proposed 

square grid path. Using the square grid path planning with the best alternate heights from the previous 

experiment, the various localization error for 25 blind nodes at various positions. The number of transmitted 
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beacons, minimum and maximum number of received beacons and length of path can be retrieved. The 

maximum number of beacons is expected to vary depending on the location of the blind node. The aim of this 

experiment is to compare the factors, which determine the time and energy needed by the mobile anchor to 

traverse the grid. These factors are travel distance and number of transmitted beacons. Grid spacing of 5m, 

10m, 20m and 30m are used, with alternate heights of 10m & 13 m. 

 

 

3. RESULTS AND ANALYSIS 

3.1.  Number of iteration for multiple blind node localization 

The result is based on an experiment using a square grid path for localizing a favourable blind node 

at 500,500,0. Using a spacing of 10 metres between beacons and alternate 10 and 13 metres height, the 

localization errors versus number of iterations are plotted for 5 different runs. So, for, say, 10 iterations, the 

median accuracy over 10 simulation runs is calculated and plotted and this is repeated 5 times. The five 

different median values are examined. If there are insufficient iterations, each trial will give significantly 

different results. For sufficient iterations, the individual medians should be tightly clustered. The results are 

plotted in Figure 3. From these results, it can be seen that for 40 or more iterations, the results are tightly 

clustered from the 5 trials. The standard deviation in Table 1 is relatively low from 40 to 100 iterations with 

the lowest at 70. Therefore, it can be suggested that 70 iterations is the best choice to provide a good balance 

between computational efficiency and error consistency across the trials. Thus, for the rest of these 

experiments, it will be used to calculate median localization errors. 

 

 

 
 

Figure 3. Median error (m) versus number of iterations for 5 trials 

 

 

Table 1. Standard deviation for each of 5 trials 
Trial Number of iterations 

 5 10 20 30 40 50 60 70 80 90 100 
1 2.81 6.97 7.07 7.50 6.92 6.74 7.11 7.10 6.94 7.06 7.07 

2 4.62 6.68 6.49 6.05 7.03 6.90 7.08 7.22 6.61 6.99 7.18 

3 6.45 6.68 6.22 6.06 7.16 6.79 6.99 7.19 6.94 7.02 7.04 
4 7.74 7.05 6.73 7.36 7.10 7.13 7.15 7.17 7.09 6.90 6.98 

5 7.57 6.40 6.88 6.74 6.87 6.90 7.24 7.14 6.96 6.99 7.20 

Standard deviation 2.10 0.26 0.33 0.69 0.13 0.15 0.09 0.04 0.18 0.06 0.09 

 

 

3.2. Possible height of beacons 

The result for experiment 2 is to determine the best possible combination height for alternate rows 

of beacons in the square grid flightpath as shown in Figure 4 for the two nodes. This shows that the 

performance is significantly better for the 10/13m and 10/15m alternate heights for both nodes. It also shows 

that error reduces as more beacons are used up to about 13 nodes, and does not significantly improve beyond 

that. The next experiment will investigate the best heights using a lower height of 10m and an upper height of 

11-15m. 
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Figure 4. Comparison between height for blind node 127,192,0 and 500,500,0 

 

 

3.3. Possible spacing between beacons 

Experiment 3 investigated whether a blind node could reliably receive 20 beacon messages, and if 

so what the localization error was, using the different grid spacing of 5, 10, 20, 30, 40, 50, and 60m and 

different heights. Based on results in Figure 5, it was found that for 20m spacing and less, 20 beacons could 

reliably be received. For 30m, less than 20 beacons were received, but localization could still be achieved. 

The previous experiments showed that around 12 or 13 beacons are needed for good localization. For 40m 

and beyond, the blind node had insufficient beacons to give good localization. In terms of path heights, the 

combination of 10 and 13m gave the best results for 5m and 20m spacing and was very close to the best for 

10m spacing. Therefore, for future experiments, grid spacing up to 30m will be examined, and heights of 

10m and 13m will be used. 

 

 

 
 

Figure 5. Comparison between localization errors versus beacon distance interval using 20 beacons 

 

 

3.4. Path length and number of beacons 

The following results Figures 6 (a) (b) and (c) show the localization error for 3 blind nodes at 

different positions. The three nodes are located at favourable (500,500,0), unfavourable (0,0,0) and  

between-beacon positions (142,439,0). The result is generated based on localization using a minimum of 4 to 

a maximum of 20 anchor positions for square grid path planning using 70 simulation iterations.  

The result for blind node 500,500,0 in Figure 5 shows that with spacing of 5m and 10m, the 

localization error reduces until about 14 beacons, and then it is relatively constant. However, the errors for 

20m spacing increase after 8 beacons and are relatively constant for 30m spacing up to the maximum 

available beacons. Blind node 0,0,0 could only be localized using 5m and 10m spacing with 20 beacon 

positions. For 20m and 30m spacing, error is large. The result of blind node 142,439,0 shows 20m spacing 

gives lowest error up to about 11 beacons, however the 20m error increases starting from 12 beacon 

positions. 5m and 10m spacing continue to improve with more beacons. Based on these results, 5m and 10m 



                ISSN: 2302-9285 

Bulletin of Electr Eng and Inf, Vol. 8, No. 4, December 2019 :  1333 – 1342 

1340 

spacing give significantly better accuracy than 20m and 30m spacing, provided that sufficient beacons (14 or 

more) are used. For most blind nodes, 20m spacing still gives 20 available nodes, however for nodes near the 

edge this number falls significantly, and is sometimes as low as 10, again suggesting 20m spacing is just at 

the edge of reliable localization, and would only be recommended if the mobile anchor path length was a 

major factor. 

 

 

  
  

(a) (b) 

  

 
 

(c) 

 

Figure 6. Average localization error for blind node, (a) (500,500,0), (b) (0,0,0), and (c) (142,439,0) 

 

 

However, there is not a clear advantage in using 5m spacing, and in some cases, it gives poorer 

results than 10m spacing. As can be seen from Table 2, it requires twice the travel distance and 4 times as 

many radio transmissions, with negligible improvement in accuracy. Therefore, for this particular scenario, a 

10m spacing is the preferred option. These experimental results are specific to this scenario, but they do 

demonstrate that localization of air-dropped sensors using an airborne mobile anchor is feasible, and that 

simulation experiments can suggest suitable operational parameters for that localization. Thus, for scenario 

with different parameter values, a set of similar experiments as in this section could be conducted. 

 

 

Table 2. Path characteristics for different grid spacing 

Characteristics 
Spacing 

5m 10m 20m 30m 

Maximum Beacons 20 20 20 14 
Minimum Beacons 20 20 10 0 

Transmitted 40200 10201 2601 1156 

Length of Path 201km 102km 52km 35km 
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4. CONCLUSION  

These experiments aim to address the trade-off between the energy costs of travelling and 

transmitting the beacons versus the accuracy of the localization, as well as choosing a good path geometry. 

The results here are not universal results, and they do not give a flight path that is suitable for all sensor 

deployments. What they do is describe a methodology by which such decisions can be made through 

simulation of a specific scenario. Firstly, a square grid with alternate height rows has been shown to give 

good localization which avoids flip ambiguity. A square grid is suitable for a square search area compared to 

some of the other possible paths described in section 2, and it is the only geometry considered in detail here. 

Different generic flightpaths could be more appropriate for different shaped deployment areas. Secondly, 

simulation of different alternate heights can be used to determine suitable heights which minimize errors. In 

this case 10m and 13m were identified as best. 

Thirdly, an initial investigation of possible grid spacing can eliminate those options where there are 

often insufficient beacons to localize nodes well. In this scenario, spacing more than 30m did not give 

reliable localization and were not investigated further. For the best quality of localization results, up to 20 

beacons can be used to improve localization performance. Fourthly, different grid spacing can be simulated 

to find the best spacing, which trades off accuracy for flight time and the number of transmitted beacons. In 

my scenario, a spacing of 10m was identified as the best compromise. For scenarios with different radio 

ranges, the compromise may be different. It was observed that one node, right at the corner of the sensing 

area (1000,1000,0) could not reliably receive enough beacons to be localized. This suggests that a flight path 

will need to extend slightly beyond the limits of the deployment area to enable all nodes to be localized. 

Finally, the results obtained for geometric sensitivity showed that it is not always best to choose the strongest 

beacons to use for localization. Investigating the best way to select beacons based on the relative angles 

between rays from the 20 closest beacons is suggested as useful future work. 
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